quinta-feira, 3 de abril de 2014

Evidências a favor da evolução

Evidências descobertas pela ciência a favor da evolução incluem fósseis, estruturas homólogas, e semelhanças a nível molecular entre o DNA das espécies.


O registo fóssil



Investigação no campo da paleontologia, o estudo dos fósseis, apoia a ideia que todas as criaturas vivas são aparentadas. Os fósseis fornecem provas que mudanças nos organismos acumuladas durantes longos períodos de tempo (milhões de anos) levaram à diversidade de formas de vida que vemos hoje. Um fóssil por si revela a estrutura do organismo e a relação entre espécies atuais e extintas, permitindo aos paleontologistas construir a árvore genealógica de todas as formas de vida da Terra.

A paleontologia moderna começou com o trabalho de Georges Cuvier (1769-1832). Cuvier notou que, em rochas sedimentares, cada camada contém um grupo específico de fósseis. As camadas mais profundas, que ele conjecturou serem mais velhas, continham formas de vida mais simples. Ele também notou que várias formas de vida já não existem actualmente. Cuvier propôs o conceito de "catastrofismo", que explica o registo fóssil em luz da visão teológica do seu tempo. O catastrofismo proponha que catástrofes teriam ocorrido em algumas áreas ao longo da história da Terra. Estas áreas seriam depois repovoadas por espécies que migravam de locais vizinhos. 
Atualmente, muitos fósseis foram já descobertos e identificados. Estes fósseis servem como um registo cronológico da evolução. O registo fóssil também apresenta exemplos de espécies de transição que demostram ligações ancestrais entre formas de vida atuais e passadas. Um desses fósseis de transição é a ‘’Archaeopteryx’’, uma criatura antiga que possuia as características típicas de um reptil, mas no entanto possuia também penas semelhantas às aves. A consequência desta descoberta é que os répteis e as aves atuais originaram de um ancestral comum.
    
                                           Anatomia comparada

Taxonomia

Taxonomia é o ramo da biologia que dá nomes e classifica todas as coisas vivas. Os cientistas usam semelhanças morfológicas e genéticas para os ajudarem a categorizar as formas de vida baseada em relações ancestrais. Por exemplo, orangotangos, gorilas, chimpanzés e humanos pertencem todos ao mesmo grupo taxonómico denominado família – neste caso a família chama-se Hominidae. Estes animais estão agrupados por causa de semelhanças na morfologia que derivam de ancestrais comum (as chamadas "homologias").
Fortes evidências a favor da evolução provêm da análise de estruturas "homólogas" em espécies diferentes que já não realizam a mesma tarefa. Um exemplo é o antebraço de mamíferos. O antebraço dos humanos, gatos, baleias e morcegos tem todos estruturas ósseas marcadamente semelhantes. No entanto, cada um dos antebraços destas quatro espécies realiza uma tarefa diferente. Os mesmos ossos que formam as asas de uma ave, que são usadas para voar, também formam as barbatanas duma baleia, que são usadas para nadar. Tal "design" faz pouco sentido se as estruturas não estão relacionadas e construídas separadamente para aquela função particular. A teoria da evolução explica estas estruturas homólogas: todos os quatro animais partilham um ancestral comum, e cada um sofreu alterações ao longo de muitas gerações. Estas mudanças de estrutura produziram ante-braços adaptados a tarefas diferentes. Darwin descreveu estas mudanças de morfologia como "descendência com modificação"
Embriologia
Em alguns casos, a comparação de estruturas anatômicas nos embriões de duas ou mais espécies demonstra a existência de um ancestral comum que não era óbvio na comparação entre formas adultas. Tais homologias podem ter sido perdidas ou adquirido funções diferentes à medida que o embrião se desenvolve. Por exemplo, parte da base da classificação do grupo dos Vertebrados (que inclui os humanos), é a presença de uma cauda (que se estende depois do ânus) e fendas branquiais na faringe; ambos aparecem durante algum estádio de desenvolvimento mas não são sempre óbvios na forma adulta. Nos humanos, por exemplo, a fendas branquiais desenvolvem-se na trompa de Eustáquio e a cauda degenera durante o desenvolvimento embrionário.
Devido às semelhanças morfológicas presentes nos embriões de diferentes espécies durante o desenvolvimento, chegou-se a assumir que os organismos recapitulavam a sua história evolutiva como embriões – por exemplo, embriões humanos passariam por uma fase anfíbia e depois réptil antes de completar o seu desenvolvimento como adultos. Tal recapitulação, resumida por "a ontogenia recapitula a filogenia", não é apoiada por nenhuma evidência científica. O que acontece de facto é que as primeiras fases são semelhantes em vários grupos de organismos. Por exemplo, uma bola oca de células nos animais, que depois se diferencia. Nas fases inicial, por exemplo, todos os vertebrados são extremamente semelhantes, mas não se assemelham exactamente com nenhuma espécie ancestral. Assim que o desenvolvimento progride, cada vez mais características típicas da espécie emergem do padrão básico.
Estruturas vestigiais
Homologia também inclui um grupo único de estruturas partilhadas denominadas "estruturas vestigiais". "Vestigial" refere-se a partes anatómicas que têm utilidade miníma, se é que tem alguma, para os animais que as possuem. Estas estruturas aparentemente ilógicas são resquícios de órgãos que desempenhavam um papel importante nas formas ancestrais. Por exemplo, as baleias ainda possuem pequenos ossos da perna vestigiais que parecem ser o que resta das pernas que os seus antecessores usavam para andar em terra.
O Homem também têm muitos órgãos vestigiais, incluindo músculos da orelha, os dentes do siso, o apêndice, os ossos da cauda e pelos do corpo.
Evolução convergente
No entanto, comparações anatómicas podem ser enganadoras; nem todas as semelhanças anatómicas indicam uma relação próxima. Organismos que partilham ambientes semelhantes podem desenvolver características físicas semelhantes; um processo chamado de "evolução convergente". Por exemplo, a forma do corpo dos tubarões e dos golfinhos é muito semelhante, no entanto, os dois animais só são vagamente aparentados – os tubarões são peixes e os golfinhos são mamíferos. Estas semalhanças resultam de as duas poulações terem sido submetidas à mesma pressão selectiva. Dentro de ambos os grupos, mudanças que beneficiavam a natação teriam sido favorecidas. Assim, ao longo do tempo, elas desenvolveram morfologias semelhantes, apesar de não serem muito aparentadas.
Seleção artificial
Seleção artificial é o cruzamento controlado de plantas e animais domésticos. Quando a reprodução é controlada, os seres humanos podem determinar que animais se reproduzem, e até certo ponto, que alelos passarão para as gerações futuras. O processo de seleção artificial tem tido um impacto significativo na evolução dos animais domésticos. Por exemplo, as pessoas produziram diferentes raças de cães através de cruzamentos controlados. As diferenças entre a raça Chihuahua e Dogue alemão resultam de seleção artificial. Apesar do aspecto físico ser completamente diferente, elas e todas as outras raças de cães evoluíram a partir de uns poucos lobos que foram domesticados no que é agora a China há menos de 15 000 anos.
Darwin obteve muito do seu apoio para a seleção natural da observação dos resultados da seleção artificial. Muito do seu livro "A Origem das Espécies" foi baseado nas suas observações da diversidade de pombos domésticos que provenientes da seleção artificial. Darwin propôs que se o Homem consegue, em períodos pequenos, alcançar mudanças dramáticas em plantas e animais domésticos, então a seleção natural, tendo milhões de anos para operar, pode produzir as diferenças observadas entre todas as coisas vivas de agora. De facto, não há diferença entre os processos genéticos subjacentes à seleção artificial e natural. Tal com na seleção natural, as variações resultam de mutações aleatórias; a única diferença é que na seleção artificial, os seres humanos selecionam quais dos organismos poderão reproduzir-se.

Biologia molecular


Todos os organismos vivos possuem moléculas de DNA, RNA e proteínas. Se dois organismos são parentes próximos, estas moléculas serão muito semelhantes. Por outro lado, quanto mais distante for a relação entre eles, mais diferenças moleculares terão. Por exemplo, dois irmão são muito próximos e terão DNA muito semelhante, enquanto que primos afastados terão mais diferenças no seu DNA. Comparando estas moléculas é extremamente útil quando se estuda espécies que são muito próximas. O grau de parentesco é demonstrado pela semelhança entre estas moléculas. Por exemplo, a comparação o DNA de chimpanzés com o de gorilas e humanos mostrou que os chimpanzés são mais parecidos no seu DNA com os humanos do que os gorilas (até 96% de semelhanças entre o DNA de humanos e chimpanzés). Isto sugere que os humanos e chimpanzés são mais aparentados do que com os gorilas.

Os cientistas deram grandes avanços na análise destas molécula, particularmente no DNA que pertence aos "genes" dos organismos. Genes são pedaços de DNA que transportam informação e influenciam as propriedades de um organismo. Por exemplo, os seus genes decidem a sua aparência geral e a cor dos seus cabelos e dos seus olhos – porque parentes próximos tem genes semelhantes, tendem a ser parecidos. A forma exata dos genes num organismo chama-se "genótipo" e é este conjunto de genes que influencia as propriedades (ou "fenótipo") de um organismo.O campo da sistemática molecular concentra-se na medida das semelhanças nestas moléculas e em usar esta informação para perceber como os organismos estão relacionados pela evolução. Estas comparações tem permitido aos biólogos construir uma "árvore genealógica" da evolução da vida na Terra. Inclusivamente, é possível desvendar as relações entre organismos cujos antepassados comuns viveram há tanto tempo que a aparência dos organismos já não apresentam qualquer semelhança.

Co-evolução
Co-evolução é o processo pelo qual duas ou mais espécies influenciam a evolução uns dos outros. Todos os organismos são influenciados pela vida à sua volta; contudo, em algumas espécies há evidência que que atributos determinados geneticamente em cada uma das espécies resulta da interação entre dois organismos; co-evoluíram.
Um exemplo muito bem documentado é a da co-evolução entre ‘’Pseudomyrmex’’, uma espécie de formiga, e a acácia, a planta que a formiga usa como abrigo e alimento. A relação entre os dois é tão íntima que levou à evolução de estruturas especiais e comportamentais em ambos os organismos. A formiga defende a acácia contra herbívoros e limpa o chão da floresta de sementes de plantas competidoras. Em resposta, as plantas evoluíram espinhos inchados que as formigas usam com abrigo e partes das flores especiais que as formigas comem.Esta co-evolução não implica que as formigas e a árvore escolheram comportar-se de um modo altruísta. Ao longo da vida de uma população, pequenas mudanças genéticas quer na árvore quer nas formigas beneficiaram ambas e o benefício aumentou um pouco a probabilidade de que a característica passe para a geração seguinte, onde deu às colônias de formigas e às árvores, cada vez mais interdependentes, uma maior hipótese de sobrevivência. Com o passar do tempo, mutações sucessivas criaram a relação que vemos hoje.

Nenhum comentário:

Postar um comentário